Confidential Customized for **Lorem Ipsum LLC** Version 1c

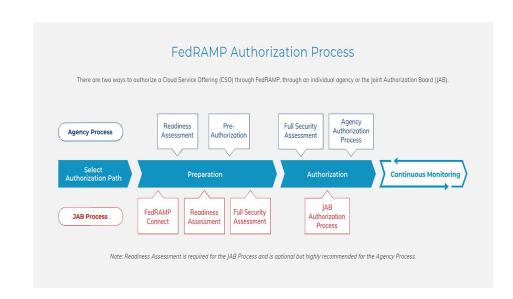
Leveraging FedRAMP® as a Transformative Tool

From Checkbox to Culture

Presentation for the OpenSSL Conference, Prague 2025 Bernie Leung, Bron Torres, Sapna Paul

Agenda

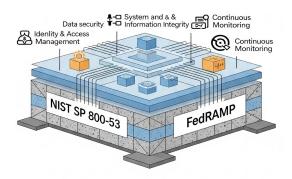
- 1. FedRAMP Fundamentals
- 2. Why FedRAMP Matters
- 3. Encryption
- 4. Vulnerability Management
- 5. Continuous Monitoring / Improvement
- 6. Implementation
- 7. Challenges/Solutions



Transformation

FedRAMP

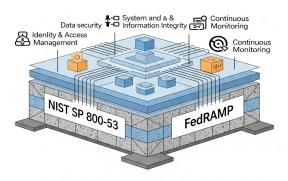
- Purpose & scope
- Government wide program that provides a standardized approach to security assessment, authorization, and continuous monitoring for cloud products and services
- Impact levels (Low/Mod/High)
 Based on FIPS 199 Categorization of the CUI processed. *CUI- Controlled Unclassified Information.
- . 3rd Party Assessor 3PAO as independent auditor



Why FedRAMP Matters

A common Security Baseline based on SP800-53 that Both agencies and service providers understand.

Business Benefits	Security Benefits
Faster adoptionCost savingsMarket access	- Risk reduction - Compliance credibility - Trust building



Role of the 3PAO

An Independent Certified <u>3rd Party Auditing</u>
Organization that Brings Conformity to Security
Baseline.

3PAO - independent auditor

=

Project objective

Getting Started to FedRAMP Authorization

FedRAMP

Key Security Indicators

FedRAMP 20X Key Security Indicators	Summary of Controls
Cloud Native Architecture	 - ** Boundary Protection and Manage Access Control Points - ** Internal System Connections - ** Immutable Infrastructure
Service Configuration and Encryption	 - ** Harden configurations, encrypt traffic and data at rest. - ** Centralized config management, - ** Cryptographic integrity. - ** Automated key management, patching strategy.
Identity and Access Management	- ** Protect user data, - ** Control access, and apply zero trust principles.
Monitoring and Logging	- ** Continuous Monitoring (SIEM) - ** Vulnerability Scanning and Patching (within H30, M90, L180 days) - ** Maintain System Inventory
Change Management	- ** Log and monitor changes - ** Automated testing before deployment ** Documented procedures and risk evaluation.
3rd Party Risk Management	- ** Identify 3 rd Party Resources, Monitor Supply Chain Risks
Cybersecurity Education	- ** Awareness training on Insider Threats, Social Engineering

FedRAMP Readiness Assessment

Step 1 – *Gap Analysis*

Top Challenges	Findings
1. Encryption	- ** All traffic within and crossing <i>Authorization Boundary</i> must be encrypted with FIPS 140-2/3 (validated algorithm).
2. Vulnerability Scanning and Remediation	- ** All systems within Authorization Boundary must be scanned. - ** Vulnerabilities must be remediated (High 30days, Medium 90days, Low180days) - ** Including leveraged vendor services.

Encryption - Cornerstone of FedRAMP

Not Unique to FedRAMP

Crosswalk for commonly used Standards

Control Area	NIST SP 800-53	ISO 27002	SOC 2 (Common Criteria)
Encryption at Rest	SC-28, SC-13	A.8.2.3	CC6.1, CC6.2
1	SC-8, SC-13, SC-12 (key management)	A.13.1.1, A.13.1.2, A.13.1.3	CC6.1, CC6.2

Encryption - Cornerstone of FedRAMP

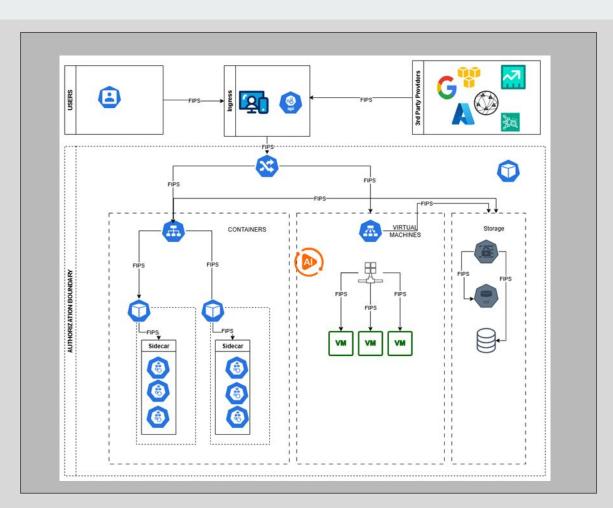
FedRAMP additional Guidance to SP800-53

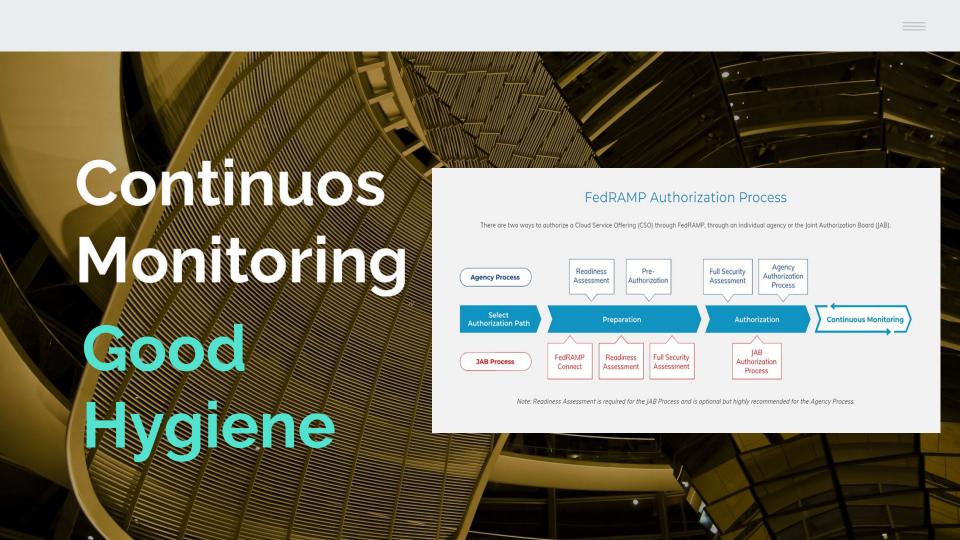
SC-8 Transmission Confidentiality and Integrity (L)(M)(H)

Protect the [FedRAMP Assignment: confidentiality AND integrity] of transmitted information.

SC-8 Additional FedRAMP Requirements and Guidance:

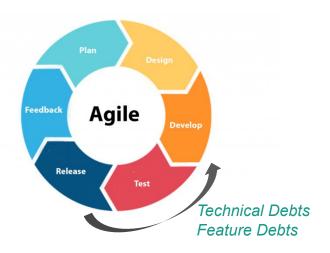
Guidance: For each instance of data in transit, confidentiality AND integrity should be through cryptography as specified in SC-8 (1), physical means as specified in SC-8 (5), or in combination.


Data In Transit Encrypted includes:


- Crossing the system boundary
- Between compute instances including containers
- From a compute instance to storage
- Replication between availability zones
- Transmission of backups to storage
- From a load balancer to a compute instance
- Flows from management tools required for their work
 e.g. log collection, scanning, etc.

Encryption

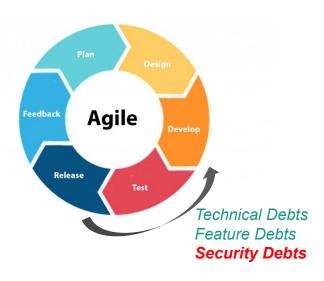
Data in Transit


- within AuthorizationBoundary and
- crossing Authorization Boundary

Agile SDLC

Dev Sec Ops → Agile System Development and Delivery

INTENTION:


- Facilitate a Faster Time to Market
- Accept Deficiencies as Technical Debts
- · Remove Technical Debts as Time Permits.

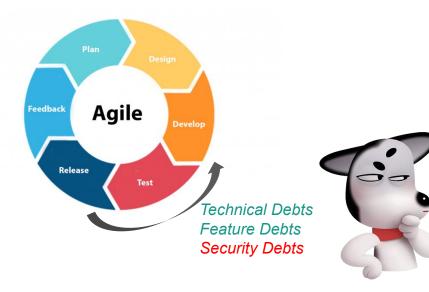
The PROCESS:

Allocate Time for Removing Technical Debts.

Agile SDLC

DevOps → Agile System Development, Delivery and Security

INTENTION:


- Shift Left on Security
- Only Allow Low and Medium Security Debts

The PROCESS:

- Block Software with High Severity from Deployment
- Remediate Medium Severity within SLA.

Agile SDLC

DevOps → Agile System Development, Delivery and Security

INTENTION:


- Shift Left on Security
- Only Allow Low and Medium Security Debts

The PROCESS:

- Block Software with High Severity from Deployment
- Remediate Medium Severity within SLA.

Continuous Monitoring - The Long Tail

PLAN → SCAN → PRIORITIZE → PATCH → VALIDATE → IMPROVE → back to PLAN

INTENTION:

To facilitate a disciplined and structured approach to tracking risk-mitigation activities.

The PROCESS:

Plan of Action & Milestone (monthly report, soon moving to continuous API access)

Maintain Continuous Health in Production

 \equiv

Project objective

Implementation Strategy

Target audience

"If encryption is everyone's job, it's no one's responsibility."

- The Mirror

1. The Question

"Who Owns Encryption?"

1. The Real Question

"Who Owns Encryption?"

It's: "How do we ensure encryption becomes enforceable, explainable, and consistent—without slowing teams down?"

FedRAMP teaches us this: Trust is not a feature. It's a repeatable system.

The Myths That Derail Encryption Programs

- "It's already handled by AWS KMS / Azure Key Vault / GCP CMEK."
- "DevSecOps owns it."
- "It's on the backlog."
- "We have secrets in GitHub Actions, we're good."

Truth: Encryption tooling ≠ encryption governance

Tools Exist. What's Missing Is the "Why"

- Why do we encrypt this data?
- Why these keys?
- Why now and not at runtime?

: Trust is not a feature. It's a repeatable system.

FedRAMP as a Forcing Function

FedRAMP isn't just about encryption compliance—it forces cross-functional alignment:

Principle	Encryption Example	
Least Privilege	Envelope encryption with scoped access	
Auditability	CMKs with logging in CloudTrail, Sentinel, etc	
Consistency	Terraform modules / OPA / policy-as-code	

=

Project objective

The Real World Problem

The Real-World Problem:

Heterogeneous Dev Patterns

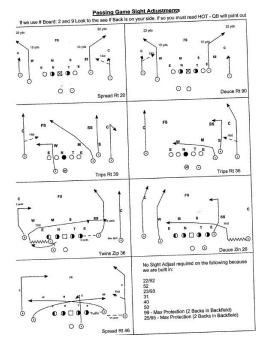
- Legacy apps with no envelope encryption
- Cloud-native microservices vs .NET monoliths
- Data scientists spinning up rogue buckets

The Real-World

Problem

You can't govern what you can't standardize and,

You can't standardize what you don't understand.



- Legacy apps with no envelope encryption
- Cloud-native microservices vs .NET monoliths
- Data scientists spinning up rogue buckets

The Playbook:

Anchor to FedRAMP, Scale via Automation

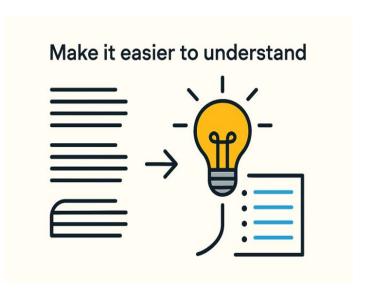
- 1. Define intent: What counts as sensitive? What are our trust zones?
- 2. Codify controls: Use IaC, templates, policy-as-code (e.g., Sentinel, OPA, Rego)
- 3. Enforce in pipelines: GitHub Actions, Azure DevOps, Terraform Cloud, Backstage
- 4. Monitor + prove: Audit logs, CI/CD evidence, dashboards for execs

Your Encryption Program Isn't a Tech Problem, It's a Narrative Problem

"If you can't explain why encryption matters to a CFO, it won't matter how good your KMS strategy is."

Help people understand:

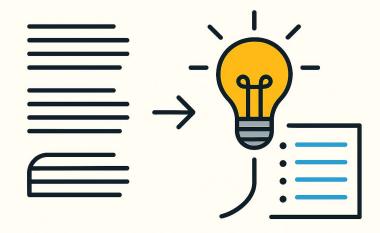
- Why this matters
- Why it's hard
- Why now



In Closing

Encryption at Scale Is Not About Keys—It's About Culture

- Anchor to FedRAMP to drive alignment
- Codify trust into your pipelines
- Scale across non-standard clouds and codebases


- Make the invisible visible

How Can This Community Help?

Make SSL/TLS

Make it easier to understand

Thank you.

